The reading for today included three theorems. Below are four theorems. Circle the three that were in the reading:

- (A) Let R be a commutative ring with unity and $r, s \in R$. Then $\langle r \rangle \subseteq \langle s \rangle$ if and only if r = st for some $t \in R$.
- (B) Let R be a commutative ring with unity and $r \in R$. Then $\langle r \rangle = \langle 0 \rangle$ if and only if r is zero.
- (C) Let R be a commutative ring with unity and $r \in R$. Then $\langle r \rangle = R$ if and only if r is a unit.
- (D) Let R be an integral domain and $r, s \in R$. Then $\langle r \rangle = \langle s \rangle$ if and only if r and s are associates.

Name	Reading Quiz 4

The reading for today included three theorems. Below are four theorems. Circle the three that were in the reading:

- (A) Let R be a commutative ring with unity and $r, s \in R$. Then $\langle r \rangle \subseteq \langle s \rangle$ if and only if r = st for some $t \in R$.
- (B) Let R be a commutative ring with unity and $r \in R$. Then $\langle r \rangle = \langle 0 \rangle$ if and only if r is zero.
- (C) Let R be a commutative ring with unity and $r \in R$. Then $\langle r \rangle = R$ if and only if r is a unit.
- (D) Let R be an integral domain and $r, s \in R$. Then $\langle r \rangle = \langle s \rangle$ if and only if r and s are associates.